Engineering Mathematics is one of the scoring section in GATE/BARC/ISRO Exam.Looking at your requirement, we are sharing with you Important Engineering Mathematics Formulas & Shortcuts for Competitive Exam as well as Engineering exam.

1. If 𝑟𝑟′, no solution, if 𝑟=𝑟′=𝑛, unique solution if 𝑟=𝑟′<𝑛, many solutions. (non-homogeneous)

2. If 𝑟=𝑛, trivial solution, if 𝑟<𝑛 ,then (𝑛𝑟) linearly independent solutions. (Many solutions) and if 𝑚<𝑛, then many solutions.

3. 𝑓(𝑥+) =𝑓(𝑥) +𝑓′(𝑥) +22!𝑓′′(𝑥) +33!𝑓′′′(𝑥) + ………∞

4. If 𝑟𝑡𝑠2>0 and 𝑟<0 𝑓(𝑥,𝑦) have maximum, if 𝑟𝑡𝑠2>0 and 𝑟>0 𝑓(𝑥,𝑦) have minimum at(𝑎,𝑏) and if 𝑟𝑡𝑠2<0, then saddle point. If 𝑟𝑡𝑠2=0,𝑓𝑢𝑟𝑡𝑒𝑟 investigation is required to decide.

5. ∫𝑐(𝑑𝑥+𝜓𝑑𝑦)=∫∫𝐸(𝜕𝜓𝜕𝑥𝜕𝜕𝑦)𝑑𝑥𝑑𝑦 (Green’s)

6. ∫𝑐𝑭.𝑑=∫𝑆𝑐𝑢𝑟𝑙𝑭.𝑁𝑑𝑠 (Stokes)

7. ∫𝑆𝑭.𝑁𝑑𝑠=∫𝐸𝑑𝑖𝑣𝑭𝑑𝑣 (Gauss)

8. 𝑦𝑒𝑃𝑑𝑥=∫𝑄𝑒𝑃𝑑𝑥𝑑𝑥+𝑐

9. If 𝑀 𝑑𝑥+𝑁 𝑑𝑦=0 be a homogeneous equation in 𝑥 and 𝑦, then 1𝑀 𝑥+𝑁 𝑦 𝑖𝑠 an integrating factor

10. If the equation of the type 𝑓1(𝑥𝑦)𝑦 𝑑𝑥+𝑓2(𝑥𝑦)𝑥 𝑑𝑦=0. If the equation 𝑀 𝑑𝑥+𝑁 𝑑𝑦=0 be of this type then 1𝑀 𝑥𝑁 𝑦 is an integrating factor

11. If 𝜕𝑀𝜕𝑦𝜕𝑁𝜕𝑥𝑁 be a function of x only = 𝑓(𝑥) say then 𝑒𝑓(𝑥)𝑑𝑥 is an integrating factor

 

12. If 𝜕𝑁𝜕𝑥𝜕𝑀𝜕𝑦𝑀 be a function of y only = 𝑓(𝑦) say then 𝑒𝑓(𝑦)𝑑𝑦 is an integrating factor.

13. ∫𝑀𝑑𝑥𝑦=𝑐𝑜𝑛𝑡 +∫terms of N not containing x dy=c

14. 𝑃.𝐼.=1𝑓(𝐷)𝑒𝑎𝑥=1𝑓(𝑎)𝑒𝑎𝑥 , 𝑓(𝑎)≠0, if 𝑓(𝑎)=0,𝑡𝑒𝑛 𝑃.𝐼.=𝑥1𝑓′(𝑎)𝑒𝑎𝑥,𝑓′(𝑎)≠0

15. 𝑃.𝐼=1𝑓(𝐷2)sin(𝑎𝑥+𝑏)= 1𝑓(−𝑎2), 𝑓(−𝑎2)≠0, if 𝑓(−𝑎2)=0,

then 𝑃.𝐼. =𝑥1𝑓′(−𝑎2)sin(𝑎𝑥+𝑏), 𝑓′(−𝑎2)≠0

16. 𝑃.𝐼.=1𝑓(𝐷)𝑒𝑎𝑥𝑉= 𝑒𝑎𝑥1𝑓(𝐷+𝑎)𝑉

17. 𝑃.𝐼=1𝑓(𝐷)𝑥𝑚=[𝑓(𝐷)]−1𝑥𝑚,

18. (1+𝑥)−1=1−𝑥+𝑥2−

19. (1−𝑥)−1=1+𝑥+𝑥2+

20. 𝑥𝑛𝑑𝑛𝑦𝑑𝑥𝑛+𝑘1𝑥𝑛−1𝑑𝑛−1𝑦𝑑𝑥𝑛−1+𝑘𝑛−1𝑥𝑑𝑦𝑑𝑥+𝑘𝑛𝑦=𝑋, 𝑥=𝑒𝑡 , 𝑥𝑑𝑦𝑑𝑥=𝐷𝑦, 𝑥2𝑑2𝑦𝑑𝑥2=𝐷(𝐷−1)𝑦, 𝑥3𝑑3𝑦𝑑𝑥3=D(D−1)(D−2)

21. 𝜕𝜕𝑥(∫(𝑡,𝑥)𝑑𝑡𝑔(𝑥)𝑓(𝑥))=∫𝜕𝜕𝑥(𝑡,𝑥)𝑑𝑡𝑔(𝑥)𝑓(𝑥)+𝑑𝑔𝑑𝑥 [𝑔(𝑥),𝑥]−𝑑𝑓𝑑𝑥 [𝑓(𝑥),𝑥]

22. 𝐿{𝑓(𝑡)}=∫𝑒𝑠𝑡∞0 𝑓(𝑡)𝑑𝑡

23. 𝐿(1)=1𝑠

24. 𝐿(𝑡𝑛)=𝑛!𝑠𝑛+1

25. 𝐿(𝑒𝑎𝑡)=1𝑠𝑎

26. 𝐿(sin𝑎𝑡)=𝑎𝑠2+𝑎2

27. 𝐿(cos𝑎𝑡)=𝑠𝑠2+𝑎2

28. 𝐿(sinh𝑎𝑡)=𝑎𝑠2−𝑎2

29. 𝐿(cosh𝑎𝑡)=𝑠𝑠2−𝑎2

30. 𝐿{𝑒𝑎𝑡𝑓(𝑡)}= 𝑓̅(𝑠𝑎)

31. 𝑓(𝑡+𝑇)=𝑓(𝑡) then 𝐿{𝑓(𝑡)}= ∫𝑒𝑠𝑡 𝑓(𝑡)𝑑𝑡𝑇01−𝑒𝑠𝑇

Engineering math formula
Engineering math formula 

32. 𝐿{𝑓′(𝑡)}=𝑠𝑓̅(𝑠)−𝑓(0)

33. 𝐿{𝑓𝑛(𝑡)}= 𝑠𝑛𝑓̅(𝑠)−𝑠𝑛−1𝑓(0)−𝑠𝑛−2𝑓′(0)−……..𝑓𝑛−1(0)

34. 𝐿{∫𝑓(𝑥)𝑑𝑥𝑡0}= 1𝑆𝑓̅(𝑠)

35. 𝐿{𝑡𝑛𝑓(𝑡)}=(−1)𝑛𝑑𝑛𝑑𝑠𝑛.[𝑓̅(s)]

36. 𝐿{1𝑡𝑓(𝑡)}= ∫𝑓̅(s) ∞𝑆𝑑𝑠

37. 𝑓(𝑥)=𝑎02+ Σ𝑎𝑛𝑛=1cos𝑛𝑥+ Σ𝑏𝑛𝑛=1sin𝑛𝑥

38. 𝑎0=1𝜋𝑓(𝑥)𝑑𝑥𝛼+2𝜋𝛼, 𝑎𝑛=1𝜋𝑓(𝑥) cos𝑛𝑥𝑑𝑥𝛼+2𝜋𝛼, 𝑏𝑛=1𝜋𝑓(𝑥) sin𝑛𝑥𝑑𝑥𝛼+2𝜋𝛼

39. 𝑓(𝑥)=𝑎02+ Σ𝑎𝑛𝑛=1cos𝑛𝜋𝑥𝑐+ Σ𝑏𝑛𝑛=1sin𝑛𝜋𝑥𝑐

40. 𝑎0=1𝑐𝑓(𝑥)𝑑𝑥𝛼+2𝑐𝛼, 𝑎𝑛=1𝑐𝑓(𝑥) cos𝑛𝜋𝑥𝑐𝑑𝑥𝛼+2𝑐𝛼, 𝑏𝑛=1𝑐𝑓(𝑥) sin𝑛𝜋𝑥𝑐𝑑𝑥𝛼+2𝑐𝛼

41. 𝑓(𝑥)= Σ𝑏𝑛𝑛=1sin𝑛𝜋𝑥𝑐 , where 𝑏𝑛=2𝑐𝑓(𝑥) sin𝑛𝜋𝑥𝑐𝑑𝑥𝑐0

42. 𝑓(𝑥)= 𝑎02+ Σ𝑎𝑛𝑛=1cos𝑛𝜋𝑥𝑐 where, 𝑎0=2𝑐𝑓(𝑥)𝑑𝑥𝑐0, 𝑎𝑛=2𝑐𝑓(𝑥) cos𝑛𝜋𝑥𝑐𝑑𝑥𝑐0

43. 𝜇𝑥𝑗𝑓(𝑥𝑗)𝑗 𝑎𝑛𝑑 𝜇=∫𝑥 𝑓(𝑥)𝑑𝑥 ∞−∞

44. 𝜎2=Σ (𝑥𝑗𝜇)2𝑓(𝑥𝑗) 𝑗𝑎𝑛𝑑 𝜎2=∫(𝑥𝜇)2 𝑓(𝑥)𝑑𝑥∞−∞

45. 𝑀𝑒𝑎𝑛:𝑛𝑝=𝜇 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝜎2=𝜇 (Poisson’s distribution)

46. 𝑓(𝑥)=1𝜎√2𝜋𝑒− 12(𝑥𝜇𝜎)2 (Normal distribution)

47. 𝑦=𝑎+𝑏𝑥, Σ𝑦=𝑛𝑎+𝑏Σ𝑥, Σ𝑥𝑦=𝑎Σ𝑥+𝑏Σ𝑥2

48. 𝑦=𝑎+𝑏𝑥+𝑐𝑥2, Σ𝑦=𝑛𝑎+𝑏𝑥+𝑐𝑥2, Σ𝑥𝑦=𝑎Σ𝑥+𝑏𝑥2+𝑐 Σ𝑥3, Σ𝑥2𝑦=𝑎Σ𝑥2+𝑏𝑥3+𝑐 Σ𝑥4

49. 𝑦=𝑓(𝑥)=(𝑥𝑥1)(𝑥𝑥2)…(𝑥𝑥𝑛)(𝑥0−𝑥1)(𝑥0−𝑥2)…(𝑥0−𝑥𝑛)𝑦0+(𝑥𝑥0)(𝑥𝑥2)…(𝑥𝑥𝑛)(𝑥1−𝑥0)(𝑥1−𝑥2)…(𝑥1−𝑥𝑛)𝑦1++(𝑥𝑥1)(𝑥𝑥2)…(𝑥𝑥𝑛−1)(𝑥𝑛𝑥0)(𝑥𝑛𝑥1)…(𝑥𝑛𝑥𝑛−1)𝑦𝑛

50. (𝑑𝑦𝑑𝑥)𝑥0=1𝑦0−12Δ2𝑦0+13Δ3𝑦0−14Δ4𝑦0+]

51. (𝑑𝑦𝑑𝑥)𝑥𝑛=1[∇𝑦𝑛+122𝑦𝑛+133𝑦𝑛+144𝑦𝑛+]

52. 𝑥𝑛+1=𝑥𝑛𝑓(𝑥𝑛)𝑓′(𝑥𝑛) (Newton-Raphson)

53. ∫𝑓(𝑥)𝑑𝑥𝑥0+𝑛𝑥0=2[𝑦0+𝑦𝑛+2(𝑦1+𝑦2+..+𝑦𝑛−1)] (Trapezoidal)

54. ∫𝑓(𝑥)𝑑𝑥𝑥0+𝑛𝑥0=3[(𝑦0+𝑦𝑛)+4(𝑦1+𝑦3+𝑦𝑛−1)+2(𝑦2+𝑦4+𝑦𝑛−2)] (Simpson’s)

55. 𝐸𝑟𝑟𝑜𝑟=−𝑏𝑎122 𝑓′′(𝜉)=𝑂(2) (Trapezoidal)

56. 𝐸𝑟𝑟𝑜𝑟=−𝑏𝑎1804𝑓𝑖𝑣(𝜉)=𝑂(4) (Simpson’s)

57. 𝑦𝑘+1=𝑦𝑘+.𝑓(𝑡𝑘,𝑦𝑘) where 𝑑𝑦𝑑𝑥=𝑓(𝑡,𝑦) (Euler’s)