Looking at your requirement, we are sharing with you some of Important Civil Engineering Formulas & Shortcuts for Competitive Exam as well as Engineering exam.
Strength of material
1.
𝜇
= 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
2.
𝑒𝑥
=𝑓𝑥𝐸 −𝜇𝑓𝑦𝐸 − 𝜇𝑓𝑧𝐸
3.
𝑒𝑦=
𝑓𝑦𝐸 − 𝜇𝑓𝑥𝐸 − 𝜇𝑓𝑧𝐸
4.
𝑒𝑧=
𝑓𝑧𝐸 − 𝜇𝑓𝑥𝐸 − 𝜇𝑓𝑦𝐸
5.
𝐺=
𝐸2(1+𝜇)
6.
𝐾=𝐸 3(1−2𝜇)
7.
𝑀𝐼=𝑓𝑦=𝐸𝑅
8.
𝜏
=VQIb
9.
𝑇𝐽
= 𝜏𝑟
= 𝐺𝜃𝐿
10.
𝑀𝑒
= 12[𝑀+√𝑀2+𝑇2]
11.
𝑇𝑒=
√𝑀2+𝑇2
12.
𝜎=
3𝑤𝑙2𝑛𝑏𝑡2 and 𝛿 = 𝜎𝑙24𝐸𝑡 (Leaf spring)
13.
𝛿
= 64𝑊𝑅3𝑛𝐺𝑑4 (Helical spring)
14.
𝜎𝑛=𝜎𝑥+𝜎𝑦2+𝜎𝑥−𝜎𝑦2cos2𝜃+𝜏sin2𝜃
15.
𝜏𝑡=−(𝜎𝑥−𝜎𝑦2)sin2𝜃+𝜏cos2𝜃
16.
𝜎1=𝜎𝑥+𝜎𝑦2+√(𝜎𝑥−𝜎𝑦2)2+𝜏2
17.
𝜎3=𝜎𝑥+𝜎𝑦2−√(𝜎𝑥−𝜎𝑦2)2+𝜏2
18.
𝑃=
𝜋2𝐸𝐼𝑙2 (hinged and hinged)) ,𝑃 = 𝜋2𝐸𝐼4𝑙2 (fixed and free)
19.
𝑃
= 4𝜋2𝐸𝐼𝑙2 (Fixed and fixed) ,𝑃 = 2𝜋2𝐸𝐼𝑙2
20. 𝑃 = 𝜎𝑐.𝐴1+𝛼(𝑙𝑒𝐾)2 where 𝛼=𝜎𝑐𝜋2𝐸 is Rankine’s constant
Engineering Formula |
1. 𝑀̅𝐴𝐵=−𝑃𝑎𝑏2𝑙2 and 𝑀̅𝐴𝐵=𝑃𝑎2𝑏𝑙2 (Point load)
2. 𝑀̅𝐴𝐵=−𝑤𝑙212 and 𝑀̅𝐴𝐵=𝑤𝑙212 (udl)
3. 𝑀̅𝐴𝐵=−𝑤𝑙230 and 𝑀̅𝐴𝐵=𝑤𝑙220 (uvl from left to right
increase)
4. 𝑀̅𝐴𝐵=𝑀𝑏𝑙2(3𝑎−𝑙) and 𝑀̅𝐴𝐵=𝑀𝑎𝑙2(3𝑏−𝑙) (clockwise moment)
5. 𝑈=𝑃2𝐿2𝐴𝐸 , 𝑈=∫𝑀22𝐸𝐼𝐿0 𝑑𝑥 and 𝑈=𝑇2𝐿2𝐺𝐽
6. 𝑈=1.2∫𝑉22𝐺𝐴𝐿0𝑑𝑥 (rectangular beam)
7. 𝐻= ∫𝑀𝑠𝑦𝐸𝐼 𝑑𝑥+∝𝑡𝑙−𝛿𝑙0∫𝑦2𝑑𝑥𝐸𝐼𝑙0 (two hinged arch)
8. H=𝑤𝑙28𝑑 (cable with udl) and Length of
cable 𝐿=
𝑙+83𝑑2𝑙
9. 𝑀𝐴𝐵=𝑀̅𝐴𝐵+2𝐸𝐼𝐿(2𝜃𝐴+𝜃𝐵−3Δ𝐿) , right support sinks by Δ
10. 𝑀𝐵𝐴=𝑀̅𝐵𝐴+2𝐸𝐼𝐿(2𝜃𝐵+𝜃𝐴−3Δ𝐿), right support sinks by Δ
11. 𝑀𝐴 𝑙1+2𝑀𝐵(𝑙1+𝑙2)+𝑀𝐶𝑙2=−6𝑎1𝑥1𝑙1−6𝑎2𝑥2𝑙2
12. 𝛿=Σ𝑃𝑘𝐿𝐴𝐸
13. 𝑄=−Σ𝑃𝑘𝐿𝐴𝐸Σ𝑘2𝐿𝐴𝐸+𝐿0𝐴0𝐸0 and 𝑄=−Σ(𝑃𝐿𝐴𝐸+𝐿𝛼𝑡)𝑘Σ𝑘2𝐿𝐴𝐸+𝐿0𝐴0𝐸0
14. 𝑘𝑖𝑗 =𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑖 𝑑𝑢𝑒 𝑡𝑜 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑗, 𝛿𝑖𝑗=𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑖 𝑑𝑢𝑒 𝑡𝑜 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑗
15. Far
end fixed, Transverse displacement, 𝛿=𝐿312𝐸𝐼 and 𝑘=12𝐸𝐼𝐿3
16. Far
end hinged, Transverse displacement, 𝛿=𝐿33𝐸𝐼 and 𝑘=3𝐸𝐼𝐿3
RCC
1.
𝑓𝑚=𝑓𝑐𝑘 +1.65 𝜎
2.
𝐸𝑐=5000
√𝑓𝑐𝑘 and 𝑓𝑐𝑟=0.7 √𝑓𝑐𝑘
3.
𝜀𝑠𝑡=0.002+0.87 𝑓𝑦𝐸𝑠
4.
𝐸𝑠=2×
105 𝑀𝑃𝑎 , 𝑚=2803𝜎𝑐𝑏𝑐
5.
𝑏𝑓=𝑙06+𝑏𝑤+6𝐷𝑓 for T-beams.
6.
𝑏𝑓=𝑙012+𝑏𝑤+3𝐷𝑓 for L-beams.
7.
𝑙0𝑙0𝑏+4+𝑏𝑤 ≤𝑏 for isolated T-beams.
8.
0.5𝑙0𝑙0𝑏+4 +𝑏𝑤 ≤𝑏 for isolated L-beams.
9.
𝑥𝑢𝑑=0.87 𝑓𝑦. 𝐴𝑠𝑡0.36 𝑓𝑐𝑘 𝑏𝑑 and 𝑥𝑢,𝑚𝑎𝑥𝑑= 0.00350.0055+0.87 𝑓𝑦𝐸𝑠
10.
𝑀𝑢=0.87
𝑓𝑦.𝐴𝑠𝑡 (𝑑−0.42 𝑥𝑢) for 𝑥𝑢 ≤𝑥𝑢,max
11.
𝑀𝑢=0.36
𝑓𝑐𝑘.𝑏.𝑥𝑢,𝑚𝑎𝑥(𝑑−0.42 𝑥𝑢,𝑚𝑎𝑥)
12.
𝑥𝑢,𝑚𝑎𝑥𝑑= 0.87 𝑓𝑦0.36 𝑓𝑐𝑘 (𝑃𝑡,𝑙𝑖𝑚 100)
13.
𝑀𝑢=0.87
𝑓𝑦
𝐴𝑠𝑡 (𝑑−𝑓𝑦 𝐴𝑠𝑡𝑓𝑐𝑘 𝑏)
14.
𝑦𝑓=0.15
𝑥𝑢+0.65
𝐷𝑓
when 𝐷𝑓𝑑>0.2
15.
0.87 𝑓𝑦
(𝐴𝑠𝑡−𝐴𝑠𝑡,𝑙)=(𝑓𝑠𝑐−0.447 𝑓𝑐𝑘).𝐴𝑠𝑐
16.
𝑀𝑢=𝑀𝑢,𝑙 + 0.87 𝑓𝑦.(𝐴𝑠𝑡−𝐴𝑠𝑡,𝑙) (𝑑−𝑑′)
17.
𝐴𝑠𝑡 𝑏𝑑= 0.85𝑓𝑦 (minimum tension reinforcement)
18.
𝐴𝑠𝑡,𝑚𝑖𝑛=0.12 % of 𝐴𝑔 for 𝐹𝑒-415 and 0.15 % of 𝐴𝑔 for 𝐹𝑒-250. (slabs)
19.
𝐴𝑠𝑡,𝑚𝑎𝑥=4% 𝑜𝑓 𝐴𝑔 (Beams) ,𝐴𝑠𝑐,𝑚𝑎𝑥=4% 𝑜𝑓 𝐴𝑔 (Beams)
20.
(𝑙𝑑)𝑚𝑎𝑥=(𝑙𝑑)𝑏𝑎𝑠𝑖𝑐𝑘𝑡 𝑘𝑐
21.
(𝑙𝑑)𝑏𝑎𝑠𝑖𝑐=7 for cantilever, 20 for SS and
26 for continuous beams. If span is more than 10 m, multiply above values with
10/span for SS and continuous beams.
22.
𝐿𝑑=𝑓𝑠∅4𝜏𝑏𝑑 , multiply 𝜏𝑏𝑑 value with 1.6 for deformed bars
and 1.25 for bars in compression.
23.
𝑀𝑢𝑉𝑢+𝐿0≥𝐿𝑑 and 1.3𝑀𝑢𝑉𝑢+𝐿0≥𝐿𝑑 (If confinement exists)
24.
𝜏𝑣=𝑉𝑢𝑏𝑑 , 𝑉𝑢,𝑛𝑒𝑡=𝑉𝑢+𝑀𝑑tan𝛽
25.
𝑉𝑢𝑠=0.87 𝑓𝑦 𝐴𝑠𝑣 𝑑𝑠𝑣
26.
𝐴𝑠𝑣𝑏 𝑠𝑣≥0.40.87 𝑓𝑦 (minimum shear reinforcement)
27.
𝑠𝑣≤0.75
𝑑
𝑎𝑛𝑑 300 𝑚𝑚 for vertical stirrups.
28.
𝑉𝑒=𝑉𝑢+1.6𝑇𝑢𝑏 and 𝑀𝑒=𝑀𝑢+𝑇𝑢1.7(1+𝐷𝑏)
29.
𝑙𝑑≤35
for ss and 40 for continuous slabs for Fe-250. For Fe-415 multiply above values
with 0.8
30.
𝜏𝑐2=𝑘𝑠 0.25√𝑓𝑐𝑘 , 𝑘𝑠=0.5+𝛽𝑐≤1.0 and 𝛽𝑐=𝑏𝐷
31.
𝑒𝑥,𝑚𝑖𝑛=𝑙500+𝑑30 ,20 𝑚𝑚 whichever is greater.
32.
𝑒𝑦,𝑚𝑖𝑛=𝑙500+𝑏30 ,20 𝑚𝑚 whichever is greater.
33.
𝑃𝑢=0.4
𝑓𝑐𝑘 𝐴𝑐+0.67 𝑓𝑦𝐴𝑠𝑐
34.
𝑉ℎ𝑉𝑐≥0.36(𝐴𝑔𝐴𝑐−1)𝑓𝑐𝑘𝑓𝑦 , 𝑑𝑐=𝑑−2𝑐 and 𝑑𝑚=𝑑𝑐−∅
35.
𝐶𝑟=1.25−𝑙𝑒48𝑏
36. 𝑓𝑏𝑟,𝑚𝑎𝑥=0.45 𝑓𝑐𝑘√𝐴1𝐴2 , 1<√𝐴1𝐴2≤2 , 𝐴1=Largest frustum of a pyramid
with side slopes 1 in 2, 𝐴2=loaded area of column base
0 Comments
For more Information Please Comment