A handy reference for use in geotechnical analysis and design Field Given Below :
1. πΌπ=π1−π€2log10π2/π1
2. πΌπ‘=πΌππΌπ
3. πΆπ’=π·60π·10
4. πΆπ=π·302π·60π·10
5. πΌπ=0.73 (π€πΏ−20)
6. πΌπ=π€πΏ−π€π
7. πΌπ =π€π−π€π
8. πΌπΏ=π€−π€ππΌπ
9. πΌπ=π€πΏ−π€πΌπ
10. π΄=πΌππΉ where πΉ
is clay fraction (Activity)
11. π
π·=ππππ₯−πππaπ₯−ππππ=1/πΎπ,πππ−1/πΎπ1/πΎπ,πππ−1/πΎπ,πππ₯
12. π1π2=tanπΌ1tanπΌ2 (non homogeneous)
13. π=πΆπΎπ€ππ31+π
π2
14. πΎ=πππΎπ€ (absolute permeability)
15. π=ππ ln(π2/π1)π§22−π§12
(Permeability in unconfined aquifer)
16. π=π2ππ ln(π2/π1)π§2−π§1 (Permeability in confined aquifer)
17. πβ=π1π»1+π2π»2π»1+π»2 (effective horizontal permeability
in stratified soils)
18. ππ£=π»1+π»2π»1π1+π»2π2 (effective vertical permeability in
stratified soils)
19. ππ=√πβππ£ (effective permeability)
20. π=ππΏπ΄π‘lnβ1β2 (falling head permeability test)
21. π=ππΏπ΄β (constant head permeability test)
22. π=ππ βππππ (seepage discharge)
23. ππ§=3π2π1π§2 (11+(ππ§)2 )52 (Boussinesq’s formula)
24. ππ§=ππ2π1π§2 (1π2+(ππ§)2 )32 where π=√1−2π2−2π
(Wesrwegaard’s formula)
25. ππ§=2πππ§ (11+(π₯π§)2)2 (line load)
26. ππ§=ππ(2π+sin2π)
where π=tan−1ππ§ (stress under centre of strip load
of width 2π )
27. ππ§=ππ(2π+sin2πsin2∅) where 2π=π½1−π½2 πnπ 2∅=π½1+π½2 ( strip eccentric point)
28. ππ§=π(1−cos3π)
where π=tan−1π
π§ (stress under centre of circular
load)
29. sin∅=π1−π3π1+π3 (for cohesion less soils)
30. sin∅=(π1−π3)/2πcot∅+(π1+π3)/2 (for cohesive soils)
31. π1=2πtanπΌ+π3tan2πΌ where πΌ=45+∅2
32. tan∅=ππ (shear box test for cohesion less
soils)
33. π=π ππ·2(π»2+π·6) (if both top and bottom surfaces
contributes)
34. π=π ππ·2(π»2+π·12) (if only bottom surface
contribute)
35. ππ=π π΅ 1−π2πΈ πΌπ (immediate settlement )
36. ππ=ππ(π΅ππ΅π π΅π+0.3π΅π+0.3)2 (settlement of footing based on plate settlement)
37. Ξπ’=π΅(Ξππ)+π΄π΅ (Ξππ) (Skempton’s pore pressure parameters)
38. π=ππ+π is stress path equation where ∅=tan−1π and π=π/cos∅
39. πΆπ=Ξπlog10π0+Ξππ0
40. πΆπ=0.009 (π€πΏ−10) (for normally consolidated soil)
41. πΆπ=0.007 (π€πΏ−10) (for over consolidated soil)
42. Ξπ1+π0=Ξπ»π»
43. ππ£=Ξπ»/π»Ξπ0
44. ππ£=ππΎπ€ππ£
45. ππ£=ππ£π‘π2
46. ππ£=π4π2 when π≤0.6
47. ππ£=−0.933 log10(1−π)−0.085 when π>0.6
48. ππ=πΆππ»1+π0 log10π0+Ξππ0
49. ππ=πΆππ»1+π0 log10πππ0+πΆππ»1+π0 log10π0+Ξπππ
50. π΄π=π·02−π·π2π·π2
51. ππ=ππ’πΉπΎπ»
52. ππ’=πππ+π ππ+0.5 πΎ
π΅ ππΎ (Terzaghi’s strip)
53. ππ’=1.3 πππ+π ππ+0.4 πΎ
π΅ ππΎ (Terzaghi’s square)
54. ππ’=1.3 πππ+π ππ+0.3 πΎ
π΅ ππΎ (Terzaghi’s circle)
55. ππ’=(1+0.3π΅πΏ) πππ+π ππ+(1−0.2π΅πΏ)0.5 πΎ π΅ ππΎ (Terzaghi’s rectangle)
56. ππ’=πππππππππ+π ππππππππ+0.5 πΎ
π΅′ ππΎ ππΎππΎππΎ (Meyerhof)
π΅′=π΅−2ππ₯ and πΏ′=πΏ−2 ππ¦
57. πππ’=πππ (Skempton
ππ=5(1+0.2π·ππ΅)(1+0.2π΅πΏ)
Limiting
value of π·π/π΅ ππ 2.5
58. ππ’=πβ πβπ+πΆ (ENR) where πΆ=2.54 ππ πππ ππππ βπππππ πnπ 0.254 ππ πππ π π‘πππ βπππππ
Geotechnical engineering basic formulas |
59. ππ’=πβπβπππ+πΆ2 (Hiley)
where πΆ=πΆ1+πΆ2+πΆ3
πΆ1=9.05π
π΄ with dolley and πΆ1=1.77π
π΄ without dolley and πΆ2=0.657π
πΏπ΄ πΆ3=3.55π
π΄ πΏ=πΏππππ‘β ππ ππππ ππ π π
=ππππ ππππππtπ¦ ππ π‘πππππ =0.1π
π΄=ππππ π π πππ‘πππ ππππ ππ ππππ ππ ππ2
ππ=π+π2ππ+π when π>π
ππ=π+π2ππ+π−(π−πππΈ+π)2 when π<ππ
60. ππ’=πβπβπ+π02 (Danish) π0=√2πβπβπΏπ΄πΈ
61. ππ’=π΄ππππ+π΄π πΌ π (clays)
62. ππ’=π΄ππππ+π΄π π(π̅+2π) (clays)
63. ππ’=π΄ππ̅ ππ+π΄π π̅ πtanπΏ
(sands) π̅ πππππππ π π’ππ‘π 15 π
ππππ‘β
64. ππ’=π(π΄ππππ+π΄π πΌ π) or ππ’=(π΄πππππ+π΄ππ π) (Group)
65. ππ=πππ̅−2π√ππ+π’
66. ππ=πππ̅+2π√ππ+π’
67. ππ=1−sin∅1+sin∅ and ππ=1+sin∅1−sin∅
69. ππ=sin2(π½+∅)sin2π½sin(π½−πΏ) (1+√sin(∅+πΏ)sin(∅−π)sin(π½−πΏ)sin(π½+π))2 (Coulomb’s active )
70. ππ=sin2(π½−∅)sin2π½sin(π½+πΏ) (1−√sin(∅+πΏ)sin(∅+π)sin(π½+πΏ)sin(π½+π))2 (Coulomb’s passive )
71. ππ=cosπ½−√cos2π½−cos2∅cosπ½+√cos2π½−cos2∅ and ππ=πππΎβ22cosπ½
(Inclined backfill)
72. ππ=cosπ½+√cos2π½−cos2∅cosπ½−√cos2π½−cos2∅ and ππ=πππΎβ22cosπ½
(Inclined backfill)
73. ππ=15+12(π−15)
π€βππ π>15 πππ ππ=π π€βππ π≤15 (dilatancy)
74. ππ=πΊ−11+π
(Quick sand condition)
0 Comments
For more Information Please Comment